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Abstract

The equations of motion of a multibody system are nonlinear in nature, and thus pose a
difficult problem in linear control design. One approach is to have a first-order
approximation through the numerical perturbations at a given configuration, and to design a
control law based on the linearized model. In this paper, a linearized model is generated
analytically by following the footsteps of the recursive derivation of the equations of motion.

The equations of motion are first written in a Newton-Euler form, which is systematic
and easy to construct; then, they are transformed into a relative coordinate representation,
which is more efficient in computation. A new computational method for linearization is
obtained by applying a series of first-order analytical approximations to the recursive
kinematic relationships. The method has proved to be computationally more efficient because
of its recursive nature. It has also turned out to be more accurate because of the fact that

analytical perturbation circumvents numerical differentiation and other associated numerical
operations that may accumulate computational error, thus requiring only analytical
operations of matrices and vectors.

The power of the proposed linearization algorithm is demonstrated, in comparison to a
numerical perturbation method, with a two-link manipulator and a seven degrees of freedom
robotic manipulator. Its application to control design is also demonstrated.

1. Introduction
The behavior of a nonlinear dynamic system can be approximated by a linearized model

in the neighborhood of a reference configuration. Intuitively, linear models of dynamic
systems can be obtained by simply omitting nonlinear effects of the nonlinear dynamic
systems, such as Coriolis forces, centrifugal forces, and the interaction forces between bodies.
Such a model, however, cannot satisfy the needs of computer-aided design of control systems
for multibody systems because the intuitive simplification is usually case-dependent.
Therefore, a better linearized dynamic model based on a general purpose dynamics model is
necessary. The approach that fits this requirement most is first-order approximations of the
nonlinear dynamic models, which yield valid results in the neighborhood of the reference
configuration for dynamic and control analysis. A straightforward approach to obtain first-
order approximations of multibody systems is first to generate the analytical closed-form,
nonlinear equations of motion of the systems, and then to generate the linearized equations of
motion using first-order Taylor expansions. Unfortunately, these analytical equations of
motion are generally not available because they are too complex to be generated.

Due to the difficulty of analytically generating the closed-form, nonlinear equations of
motion of a multibody system, a numerical perturbation method is usually applied to obtain a
linearized model at a certain configuration. For instance, in DISCOS [1] the numerical
perturbation method is employed to generate a linearized model for stability analysis of a
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multibody system at a selected configuration. Following a similar idea, Liang [2] implemented
a numerical perturbation method with DADS [3] for multibody mechanical system control.
Moreover, the numerical perturbation method has been widely implemented in dynamic and
control analysis. For example, Sohoni and Whitesell [4] applied it in ADAMS, and Singh,
Likins, and Vendervoortt applied [5] it to generate linear models of flexible body systems.

In the implementation of the numerical perturbation method, iterative computations
are employed to ensure that the resulting linearized models are accurate. However, the
iterative computation sometimes may not generate a satisfactory linearized model because of
failure in convergence. Therefore, a trade-off between the accuracy and convergence must be
made to generate a useful linearized model. An accurate linearized model is difficult to be
generated with good computational efficiency when the numerical perturbation approaches are
applied. In resolving this problem, the numerical perturbation method must be avoided during
the linearization procedure.

On the other hand, symbolic programming languages can be used to devise efficient
computational techniques to obtain the linearized manipulator models. Vukobratovic and Nenad
[6] proposed the linearization technique that first generates the nonlinear dynamic models of
the manipulator by means of symbolic programming languages, and then takes first-order
approximation from the given nonlinear model. Following the same approach, Neuman and
Murray [7] linearized symbolically the Lagrangian dynamic robot model about a nominal
trajectory to generate the linearized and trajectory sensitivity models of a manipulator.
Balafoutis, Misra, and Patel [8] further extended Neuman°s approach to obtain more
computational efficiency in generating linearized models by using the fact that the derivatives
of trigonometric functions need not be computed explicitly, and that the partial derivatives of
the homogeneous transformation matrices may be obtained merely by row and column
manipulations. The same idea was applied to generate linearized models for flexible multibody
systems by Jonker [9]. Thus, although this approach has the advantage of not using the
numerical perturbation method, there is at the same time a disadvantage: it relies heavily on
symbolic programming languages. Consequently, the approach is restricted to special case
studies only until a general purpose symbolic manipulation package for the dynamic modelling
becomes available.

In searching for a general purpose computer-aided dynamic analysis algorithm, Bae
and Haug [10,11,12] developed a recursive formulation, which was later improved by Bae,
Hwang and Haug [13,14]. In this approach, the equations of motion are first written in a
Newton-Euler form, which is systematic and easy to construct. They are then transformed
into a relative coordinate representation, which is efficient for computation. This approach is
extended in this paper to efficiently generate a linearized model using the recursive
computational structure and applying the analytical linear approximations of the recursive
kinematic relationships, without applying numerical perturbations. The computational
efficiency and opportunity for parallelism of the recursive algorithm would make it possible
to linearize successively for adaptive dynamics control.

An analytical linearization algorithm is derived by using the recursive variational
derivation, and by linearizing kinematic relationships analytically. In the recursive
formulation, the equations of motion are obtained through a series of coordinate
transformations. By analytically taking first-order approximations of kinematic
relationships between Cartesian, slate vector, and joint variables and then applying these
linearized relationships in the recursive variational derivation, linearized equations of motion
are generated in joint space. The proposed linearization algorithm is shown in Fig. 1 and is
explained as follows:
( 1 ) Variational equations of motion are obtained in Cartesian space and the generalized mass

and force are approximated with first-order Taylor expansions.
(2) First-order approximate kinematic relationships are obtained between Cartesian

variables and state vector variables [14] and are substituted into the variational
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equationsobtainedin (1). Linearized variational equations in state vector space are
generated.

(3) First-order Taylor expansions for the kinematical relationships between state vector
variables and joint variables are obtained, and then substituted into the approximate
variational equations obtained in (2).

( 4 ) Linearized equations of motion are obtained from the approximate variational equations
in joint space. At this stage, open-chain mechanisms are expressed in terms of
independent coordinates and closed-chain mechanisms are expressed in a mixed
differential algebraic equation (DAE) form.

( 5 ) Linearized equations of motion expressed only in terms of independent coordinates are
written in state space form for control applications.

The rest of the paper is organized as following. In Section 2, linearized kinematic
relationships are expressed in terms of the generalized state vector, which is used to simplify
expressions and to obtain compact equations. In Section 3, linearized relative kinematics
relations are derived for two contiguous bodies. The linearized equations of motion are
developed in Section 4. In Section 5, numerical examples of the recursive linearization
method are given. In addition, control designs based on the linearized models and linear control
theory are demonstrated. Finally, conclusions are presented in Section 6.

2. Generalized State Vector Notation
In this section, a first-order Taylor expansion is applied to approximate the

relationship between Cartesian variables and generalized velocity state variables. The
generalized velocity state vector, called the velocity state, is used to simplify expressions in
later derivations. It is defined as [13]

_p=[ rp+_pmp ] (1)
cop

where the subscript P represents the origin of a body-fixed frame, as shown in Fig. 2. The
Cartesian velocity of point P can be written as

_p

where rp and COpare the translational velocity of point P and the angular velocity of a body-

fixed frame at point P, respectively.
From the velocity expressions in Eqs. 1 and 2, the Cartesian velocity Yp is expressed as

yp =[ I -,p ]_p
0 I

= Tp _'p ( 3 )

Replacing rp by the virtual displacement 5rp and cop by the virtual rotation S_p, yield

the variation of the position state vector.

5Zp -Tp 5Zp (4)

The Cartesian acceleration of the body-fixed frame shown in Fig. 2 is defined as the time
derivative of Eq. 3,

_'p =Tp Yp-Vp (5)
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whereVp,=/rp=p/F 1 is a velocity coupling vector.
L O J

Since the right sides of Eqs. 1 to 5 are explicitly expressed in terms of Cartesian
variables, their first-order expansions can be obtained analytically with respect to
perturbations in the Cartesian variables•

First, by expanding Tp at a reference configuration, Eq. 4 can be represented as

_.p=(T_ +dT_+O(A) 2)_;ZP (6)

where d denotes a first-order perturbation with respect to Cartesian variables; the
superscript o signifies that the quantity is evaluated at a reference configuration, i.e.,

8Tp I= A
d'_p _ evaluated at o

and A denotes perturbed quantity, which is expressed in terms of the variables in the

Cartesian space. The perturbation of matrix Tp can be obtained as

dTp = [ o0 -d_p]O (7)

where the partial derivative of the position vector of point P can be expressed as

drp = dl:p - _p dzp ( 8 )

Similarly, the acceleration relationship, Eq. 5, can be expanded as

Yp =[T_ +dT_ + O(A) 2] _'p-[V_, +dV_ + O(A) 2] (9)

The derivatives of the position state variable and the Cartesian variable can be related
from Eq. 6 as

dZp=Tp dZp (10)

and the derivative of the Cartesian velocity vector can be written as

dYp=d(Tp _'p)

where
--- Tp d _'p + dTp _'p

dTp _'P=[ _P0 "(_prp]dZP0

Yp and d 7'p are the perturbations of velocity and position state vectors.where d

relationships in Eqs. 9, 10, and 11, the derivative of the variables in the
be expressed in terms of the derivatives of the state variables.

(11)

(12)

Based on the

Cartesian space can

3. Relative Kinematics of Two Contiguous Bodies
In this section, a first-or_ler Taylor approximation is derived to represent relative

kinematic relationships between contiguous bodies that are constrained by a kinematic joint,
as shown in Fig. 3. The relative kinematic relation between the velocities of the two
contiguous bodies i and j is defined as [I 3]

_'j = _'i + Bij qij (I 3)
where
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Bij = o_lij + (_j + iji)Hij

Hij

Relationships between virtual displacements and rotations of these bodies are obtained by
replacing the velocity vectors in Eq. 13 with virtual translational and rotational vectors; i.e.,

(14)
_Zj = iS;_i+ Bij _Sqij

Taking the time derivative of Eq• 13 yields the acceleration relationship

^ •.

Yj = Yi + Bij qij + Dij (15)
where

Dij = I]ij qij
As shown in Eqs. 13, 14, and 15, the state variables of body j are expressed in terms

of the state variable of body i and the joint variables used to define the relative motion between
bodies i and j. The first-order Taylor expansions of Eqs. 14 and 15 with respect to the state
variable of body i and the joint variables can be expressed as

8Zj = 8;; i + [ B_ + dB_ + O(z$)2] _:lij ( 1 6)

• °•

_'j = _'i + [ B_ + dB_ + O(&) 2] qij+ [ D_ + dD_ + O(A)2] (1 7)

where dBij and dDij are computed in terms of the state variables of body i and the joint
variables•

Linearized equations of motion are generated based on the linearized joint kinematic
relationships and linearized relationships between the state space variables of bodies i and j.
From Eqs• 13 and 14, relations between the perturbations of state variables and relative
coordinates are expressed as

dZj =dZ i + Bij dqi j (18)

dYj= d_' i +dBijqij + Bijdqij (19)

• • •° o°

dYj = dY i + dBij qij + Bij dqij + dDij (20)

4. Linearized Equations of Motion of a Tree Structural Mechanism
The linearized equations of motion of a tree structure mechanism that contains n joints

and n+l bodies, as shown in Fig. 4, are presented in this section. By going through the
procedure of variational derivation [13] and by replacing the nonlinear kinematic
relationships with their first-order approximations, one can generate the linearized
equations of motion for an open-chain system• Applying the linearized kinematic
relationships to the recursive variational approach yields the linearized equations of motion
that are written in terms of the joint variables.
4.1 Variational Eauations in Cartesian SDace

The variational form of the Newton-Euler equations of motion for an n-body system is
written as [3]

n

0 = '_,_-T (Mini. Oi ) (21)

i = 0
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where M i is the mass matrix and Qi is the generalized force• The variational equation must

hold for all kinematically admissible variations 8Z i, i = 1 ..... n; i.e., the kinematic constraints

on the system must be satisfied by ,SZi. Then approximate variational equations can be

generated from a set of approximations of the generalized mass and force for each body, which
are expressed as

M i = a °+ dM°+ 0(,4) 2 (22)

Qi = QO+ dQO + 0(,4)2 (23)

where dM i and dQ i are expressed in terms of Cartesian variables.
4.2 Variational Eouations in State Vector _Dace

Approximated variational equations in state vector space can be obtained by
substituting Eqs. 6, 10, 22, and 26 into the equations of motion in Cartesian space and by
replacing Cartesian variables with the state variables. The approximated variational
equations can be written as

n

T ° T ° o
0 = _ _ZT{[TiMOl'_i_'i "Ti (MOV_i +QI q] + [(dTT°M°'r_i +TTdM°'r_i +

i = o

where V i is

the notation

[13] will be used henceforth.
n

0= ((MO ,, +dMO .
i = 0

where

o o o o T°
TTM°d'T_I_'i -(dTT°MOV_i +TTdMOV_i +TT M°V_l +dTTO 0 +TidO_)]+O(,4) 2 }

(24)
a velocity coupling term, which is defined in Eq. 5. In order to simplify Eq. 24,

of the generalized mass matrix IVIi and force vector Cli in the state vector space

The equations of motion are thus expressed as

-d_ i + 0(,4) 2 } (25)

dlVIi = dTTMiT ' +TTdMiTi +TTMidTi

dQi= dTTMivi +TTdMiVi +TTMidVi *dTTQi *TTd_,

and dM i, dT i, dV i and dQ i, which are expressed in terms of the perturbations of the Cartesian
variables, can be rewritten in terms of the perturbations of the state variables by
substituting the relationship between the Cartesian variables and the state variables into
their expressions.
4.3. Linearized Eouations of Motion in Joint Space

The approximated variational equations of motion in state vector space can be rewritten
in terms of joint variables. As the results in Section 3 indicate, the variables in state vector
space can be transformed into joint variables. The linearized equations in joint space can be
obtained by applying the following procedures. Substituting the approximated kinematic
relationship between bodies n and n-1 into the variational equations yields

n-1

i = 0

{(MOSn. +dMOSn. +0(,4)2}+ (28)
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where the perturbations are taken with respect to the state variables of the inboard bodies
and the relative variables that are used to defined the relative motion between the bodies n and
n-l. Moreover, the relative kinematic matrix Bn. 1 n is denoted as B n to simplify the

expressions during the derivation.
Because joint n is not subject to any relative constraint between the connected bodies,

the virtual displacement of the joint coordinate is arbitrary. Thus the coefficient of 8q T is

equal to zero; i.e.,
O O " "

0 = (BT +dB T + O(4)2)[( i_lO_,n _(_) +dl_O_,n _d(_ + O(A) 2 ] (27)

Substituting the first-order Taylor expansion of the acceleration vector into state vector
space, and substituting the relationships between state and joint spaces into Eq. 27, gives the
equation of motion corresponding to joint n.

O • O

o _O,_O T _O'O O(A) 2) (28)0 : BT ( MaY n - (:_) + d (B a MaY a) -d(B T (_) +
where

d (BTIVIn_n)= dBTl_n_'n + BrndlVln_a + BTl_lnd_n

d(BTQn ) = dBT(_n + BTdQn

and dlVla and d(_ n can be written in terms of the state variables of body n-1 and the relative
variables that are used to define the relative motion between bodies n and n-l, Moreover, the

equation of motion corresponding to joint n at the reference configuration is

o _O;O (_) (29)0 = BT( MaY n -

Substituting the relationship in Eq. 29 into Eq. 28 and omitting higher order terms yields
O • O

T _O'O _d(anT (_) (30)0 = d (B a MaY n)

where Yn can be expressed in terms of the derivative of a set of independent variables

x (= [_f_} _'_) ;% q_ ¢1_ qT ... ¢iT ¢lTnqTn]T) by substituting the relationships from Eqs.

18, 19, and 20 recursively for j from n to 1.
Following the same arguments used in obtaining Eq. 30, one can obtain the linearized

equations of motion corresponding to joint i as

0 = BTi° d( Ki_' i + Ki+lBi+ 1 ¢1"i+1+ ... + KnBn Cl'n - Li) ° +

dB] ° ( KiWi + Ki+lBi+l Cl'i+l+ ... + KnBn qn- Li) O

(31)
fort = 1..... n

where K i = IVli + Ki+ 1, L i = Qi + Li+l - Ki+lDi+l , Kn = I_ln, and Ln = (_n-

By repeating the above procedure in backward path sequence to the base body, one can
obtain the linearized equation of motion for the base body as

d( Ko'_"0 + K1B1¢I'1+ ... + KnBn¢l"n - Lo) 0 = 0 (32)
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For the open-chain mechanism, the linearized equations of motion at the reference
configuration, which are represented in Eqs. 31 and 32, can be obtained recursively. During
the derivation, every perturbed term in the linearized equations can be computed either from
the perturbed variables in the Cartesian variables, which are computed analytically, or from
the analytically linearized relationships among the Cartesian, state vector, and joint
coordinate spaces.

5. Numerical Examples
In this section, the applications of the recursive linearization algorithm are illustrated

by two examples: a two-link manipulator and a robot arm with seven degrees of freedom. The
accuracy and computational efficiency of the proposed algorithm are demonstrated by
comparing the models obtained from the recursive algorithm with those obtained from the
analytical approach and from a numerical perturbation method. In the case of the two-link
system, an exact linearization is accomplished by the use of the symbolic manipulator
(MACSYMA) [15]. However, to generate the exact linearized model for a complicated system
is very difficult, even with a symbolic manipulator. In the second example, a numerical
perturbation is applied to the robot with seven degrees of freedom in order to generate a
reference linearized model with which the results of the recursive linearization algorithm are
compared.
5.1 A Two-Link Manipulator

In this subsection, a two-link manipulator, as shown in Fig. 7, is modeled and tested.
Since all the joints are revolute, one independent coordinate is assigned to each joint. The
manipulator can be modeled as a system of two differential equations. For this system, the
linearization can also be carried out analytically by using the symbolic manipulator
(MACSYMA). Therefore, it is possible to check the accuracy of the recursive linearization
algorithm by comparing the linear models obtained from both approaches: recursive
linearization and MACSYMA implementation.

The recursive linearization produced a linearized model at the specified configuration

that was defined by setting ( 1, 02, 01, and (_2 to zero. The linearized equation of motion is

I 0 0 1

0 0 0
-5.191 3.4612 0
1.1537 -4.0380 0

written as

[°'ld()l =

L:o J
F 210 dO11

0o Ldol
I 0

0
-0.0824
0.0294

0.0294
-0 01 76J

dT2 7
dTlJ

(33)
where T 1 and T 2 are actuating torques that are applied at the revolute joints. At the same

specified configuration, the symbolic manipulation generated the exact linearized model, which
is identical to the one obtained from the recursive linearization approach. A comparison of the
numerical and analytical results shows that the proposed recursive linearization algorithm
can generate a correct linearized model at a given configuration.

After the linearized model is obtained, a linear controller can be designed by applying
the linear model to existing control design tools. A linear regulator is designed to control the
motion of the manipulator by using the Pro-Matlab package. The pole placement algorithm
[16] is used to compute the full state feedback gain matrix for the nonlinear dynamic model.
The effectiveness of this regulator is tested by applying an initial deviation of the system and
using the regulator to stabilize it. As expected, the linearized model can well represent the
nonlinear model. Therefore, a small initial deviation is tested first. The results of 0.05
radian initial deviations are shown in Figs. 6 and 7. The nonlinear system can be stabilized by
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the linear regulator. Similar results are presented in Figs. 8 and 9 for 1.0 radian initial
deviations.

However, the pole placement algorithm for a multiple-input multiple-output system
does not have a unique solution [17]. The feedback gain obtained from the Pro-Matlab package
is an iterating solution, which is designed to find an insensitive set for the configuration
change. However, this algorithm requires a lot of computation to generate an optimal gain
matrix. Thus, this algorithm cannot be used for an on-line computation for the real time
simulation. To fulfill the on-line computation requirement, a simple and stable pole
placement algorithm is needed. A case particularly interesting is to determine the feedback
controller [17] in such a way that the closed loop equation is decomposed into a set of n
decoupled second-order differential equations.

0=d_ i+2F_i(0id(_i + (°2doi; i=1 ..... n (34)

where the damping factor F_iand the undamped frequency (0i of each tracking error are

specified by the designer. Defining the nxn constant diagonal matrices A 1= diagi{2F_i (0i } and

A2 = diagi{ (02 }, one can obtain the desired decoupled closed loop equation from Eq. 34 as

0 = d_ + Ald(_ +A 2 dO (35)

The closed loop equation of the linearized model with a proportional-derivative (PD)
controller can be written in a second order differential equation form as

0 =M d_ + ( P1-Kv)d(_ +( P2 " Kp) de (36)

where Kp is the position feedback gain matrix and K v is the velocity feedback gain matrix.

Equating coefficients in Eqs. 35 and 36 gives the desired closed-loop feedback gain matrices as
KV = MA1 - P1 (37)
Kp = MA 2- P2 (38)

Consequently, a linear regulator is designed to control the dynamic system. As shown in Figs.
10, 11, 12, and 13, the linear regulator can stabilize the nonlinear dynamic model for both
small and large initial deviation cases.
5.2 A Robot with Seven Degrees of Freedom

Figure 10 shows a robot arm that has seven degrees of freedom. The system consists of
eight bodies, including the base body, which is designated as ground. The adjacent bodies are
connected by revolute joints. Joints 1 to 7 are identified as Shoulder Roll, Shoulder Pitch,
Elbow Roll, Elbow Pitch, Wrist Roll, Wrist Pitch, and Toolplate Roll.

Since adjacent bodies are connected by revolute joints, one generalized coordinate is
assigned to each joint. The motion of this system can be described by seven generalized
coordinates; the dynamic system is thus formulated as a system of seven differential equations.
When a reference configuration is selected, a linearized model can be generated at this
configuration using the proposed linearization algorithm.

The configuration that is shown in Fig. 10 is selected as a reference configuration: the
angles of all the joints are zero (ql, q2 ..... q7 = 0), and the velocities of all the joints are also

zero (cl1..... or7 = 0). At this reference configuration, the linearized model that is obtained

from the recursive linearization algorithm is expressed as

E0 '] Eoldx= M-1p2 M-tp1 dx+ M-1p3 du (39)

where x = [ql q2 q3 q4 q5 q6 q7 ql cl2 _ _ _ q6 _]T, u is the actuating torque

vector, M is the generalized mass matrix that is expressed in terms of joint variables, and

65



M-1P1 = 07x7

M-1p2 =

15.737 0 -1.607 0 -.1451 0 -.18e-8-

0 15.228 0 2.8549 0 -.3485 0

.41697 0 9.2375 0 -.4480 0 -.13e-7

0 -11.44 0 -6.361 0 .5637 0

-29.11 0 3.711 0 21.533 0 .93e-7

0 -5.0345 0 -13.19 0 -15.76 0

14.914 0 5.9428 0 -25.38 0 -.58e-7

P3 =1
In this case, to generate a closed-form analytical expression for the linearized model is

too difficult for accuracy checking even if the symbolic manipulation is employed. Instead, two
comparisons were derived to make certain that the linearized model in Eq. 39 accurately
represents the nonlinear model. In the first comparison, both the nonlinear and linearized
models were perturbed with the same amount, and then the resulted acceleration changes were
examined. In the second comparison, two linearized models-one obtained from the recursive

approach and the other obtained from the numerical perturbation method-are examined.
In the first comparison, perturbation of the generalized coordinate x by

10 "s incurs the relative error of the acceleration changes between the linearized and
nonlinear model as

II dx" -dx 112
= 2.739 e-6

II dx'll2 ( 4 0 )

where dx is the acceleration change obtained from the linearized model and dx* is obtained
from the nonlinear model.

In the second comparison, a simple numerical perturbation without any convergence
checking is implemented to generate a linearized model, which will serve as a reference in
comparing the recursive linearization with the numerical perturbation. Comparing the
linearized model obtained from the numerical method with those obtained from the recursive

approach, one can observe that at the given configuration both approaches generate nearly
identical linearized models, in which the relative difference is less than 10 6.

However, the recursive algorithm proves to be more efficient than the numerical
perturbation method. In comparison with the numerical perturbation method, the recursive
linearization took half the cpu time to generate a linear model, even though the numerical
perturbation method used here was a relatively simple one. If a convergence checking
algorithm was employed for the numerical perturbation method, it would take even longer to
generate a linear model.

The simple pole placement used in the previous example was used again to design a
linear regulator. The desired closed-loop poles were selected to make the simulation results
similar to the experimental results. After properly selecting the desired poles, we used this
linear regulator to control the nonlinear dynamic model. The step response of Joint 4 is shown
in Fig. 11. From this result, it is clear that a simple regulator based on a linearized model
simulates the behavior of a complicate control system around a reference configuration.

6. Conclusion
In these examples, we have shown that the proposed linearization algorithm is both

efficient and accurate in generating a linear model at given configurations. These linear
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models are converted to the standard state space forms, which are convenient for linear
control design. Moreover, the driving force input for a required motion around a given
configuration can be predicted by using the linearized model. When a large gross motion is
involved in a prescribed trajectory, more than one linearized model may be necessary for
robust control. In such a case, the computation of linearization must be fast enough to update
the linearized model before it fails to represent the system adequately. With the emerging
parallel processing computers and computation algorithm, the use of successive linearization
will be possible for on-line adaptive control.
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